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Hand-Hygiene Mitigation Strategies Against Global Disease
Spreading through the Air Transportation Network

Christos Nicolaides ,1,2,∗ Demetris Avraam ,1,3 Luis Cueto-Felgueroso ,4,5

Marta C. González ,5,6,7 and Ruben Juanes 5,8

The risk for a global transmission of flu-type viruses is strengthened by the physical contact
between humans and accelerated through individual mobility patterns. The Air Transporta-
tion System plays a critical role in such transmissions because it is responsible for fast and
long-range human travel, while its building components—the airports—are crowded, con-
fined areas with usually poor hygiene. Centers for Disease Control and Prevention (CDC)
and World Health Organization (WHO) consider hand hygiene as the most efficient and
cost-effective way to limit disease propagation. Results from clinical studies reveal the effect
of hand washing on individual transmissibility of infectious diseases. However, its potential
as a mitigation strategy against the global risk for a pandemic has not been fully explored.
Here, we use epidemiological modeling and data-driven simulations to elucidate the role of
individual engagement with hand hygiene inside airports in conjunction with human travel on
the global spread of epidemics. We find that, by increasing travelers engagement with hand
hygiene at all airports, a potential pandemic can be inhibited by 24% to 69%. In addition,
we identify 10 airports at the core of a cost-optimal deployment of the hand-washing mitiga-
tion strategy. Increasing hand-washing rate at only those 10 influential locations, the risk of
a pandemic could potentially drop by up to 37%. Our results provide evidence for the effec-
tiveness of hand hygiene in airports on the global spread of infections that could shape the
way public-health policy is implemented with respect to the overall objective of mitigating
potential population health crises.
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1. INTRODUCTION

In past centuries, contagious diseases would
migrate slowly, and rarely across continents. Black
death, for example, which was the second recorded
pandemic in history after the Justinian Plague, orig-
inated in China in 1334 (Centers for Disease Control
and Prevention, 2015) and it took almost 15 years

8Department of Earth, Atmospheric and Planetary Sciences, Mas-
sachusetts Institute of Technology, Cambridge MA, USA.

∗Address correspondence to Christos Nicolaides, Department of
Business and Public Administration, University of Cyprus, 1
Panepistimiou Av, Aglantzia, Nicosia 2109, Cyprus; tel: +357-22-
893638; nicolaides.christos@ucy.ac.cy; chrisnic@mit.edu.

1 0272-4332/19/0100-0001$22.00/1 C© 2019 Society for Risk Analysis

https://orcid.org/0000-0002-1485-2736
https://orcid.org/0000-0001-8908-2441
https://orcid.org/0000-0001-5303-0236
https://orcid.org/0000-0002-8482-0318
https://orcid.org/0000-0002-7370-2332


2 Nicolaides et al.

to propagate from East Asia to Western Europe.
While contagious diseases were then affecting more
individuals within countries, due to poor hygiene and
underdeveloped medicine, the means of transporta-
tion of that era—sea and land—hindered the range
and celerity of disease spreading. In contrast, current
transportation means allow people to travel more
often (either for business or for leisure) and to longer
distances. In particular, the aviation industry has
experienced a fast and continued growth, permitting
an expanding flow of air travelers. In 2017 alone,
around 4.1 billion people traveled through airports
worldwide (International Civil Aviation Organiza-
tion, 2018), while the International Air Transport
Association (IATA) expects that the number of
passengers will roughly double to 7.8 billion by 2036
(International Air Transport Association, 2017).
Transportation hubs such as airports are therefore
playing a key role in the spread of transmittable
diseases (Brownstein, Wolfe, & Mandl, 2006; Hu, Li,
Guo, van Gelder, & Shi, 2019). In severe cases, such
disease-spreading episodes can cause global pan-
demics and international health and socioeconomic
crises. Recent examples of outbreaks show how
quickly contagious diseases spread around the world
through the air-transportation network. Examples
include the epidemic of severe acute respiratory syn-
drome (SARS) and the widespread H1N1 influenza.
SARS initial outbreak occurred in February 2003,
when a guest at a hotel in Hong Kong transmitted
an infection to 16 other guests in a single day. The
infected guests then transmitted the disease in Hong
Kong, Toronto, Singapore, and Vietnam during
the next few days, and within weeks the disease
became an epidemic affecting over 8,000 people in
26 countries across five continents (Peiris, Guan,
& Yuen, 2004; World Health Organisation, 2012).
The H1N1 flu, which caused around 300,000 deaths
worldwide (Dawood et al., 2012), had a similar time-
line. The first confirmed case of H1N1 was reported
in Veracruz, Mexico, on April 2009, while within few
days the infection migrated to the United States and
Europe, and two months later the World Health Or-
ganization (WHO) and the Centers for Disease Con-
trol and Prevention (CDC) declared the disease as a
global pandemic (Girard, Tam, Assossou, & Kieny,
2010).

Viruses are also transmitted easily at airports or
during flights (Jones et al., 2009), causing infectious
diseases to expand into global epidemics. Viruses
may be transmitted through air, resulting in the
contagion of airborne infections (Jones & Adida,

2011; Memish et al., 2014), or through physical con-
tact between individuals (Nicas & Jones, 2009). The
transmission is accelerated when dense populations
are concentrated in confined spaces (Dalziel et al.,
2018), like an airport, with lack of good hygiene
and efficient air ventilation. After an outbreak,
infections diffuse while infected individuals transmit
the disease to susceptible individuals. Airports play
a major role in such contagion dynamics (Colizza,
Barrat, Barthélemy, & Vespignani, 2006; Lawyer,
2016), as they contribute daily to the contact of
people from all over the world, some of whom may
be carrying endemic infections from their country
of origin. In addition, there are numerous highly
contaminated surfaces that are frequently touched
by passengers at airports and inside aircrafts (Ikonen
et al., 2018). Self-service check-in screens, gate bench
armrests, water fountain buttons and door handles
at airports, as well as seats, tray tables, and handles
of lavatories in aircrafts, are all known to have
high microbial contamination (McKernan, Burge,
Wallingford, Hein, & Herrick, 2007; Schaumburg,
Köck, Leendertz, & Becker, 2016; Zhao et al.,
2019).

Mitigation strategies are designed and imple-
mented to inhibit global pandemics. At the level of
individuals, there is a focus on behavioral change
toward adopting different interventions in the event
of a health emergency (Poletti, Ajelli, & Merler,
2011; Verelst, Willem, & Beutels, 2016). Along with
other developments in medicine, vaccination has
made a big contribution in that direction, leading to
the extinction of past epidemics and to a significant
reduction of mortality due to specific infections
(Greenwood, 2014). Vaccination has a substantial
mitigating effect when effective vaccines are avail-
able soon enough after the emergence of a new dis-
ease, and when vaccination campaigns cover about
70% of a susceptible population (Yang et al., 2009).
However, despite the known impact of vaccines on
the reduction of infections, the rate of vaccination
in the population has remained unchanged over the
past decade (Yokum, Lauffenburger, Ghazinouri, &
Choudhry, 2018). Social nudges such as peer effects
or education on vaccination benefits, and changes in
the design of vaccination campaigns, can be deployed
to change human behavior toward the increase of
influenza vaccination rates (Patel, 2018). In addition
of preventing disease spreading by vaccination,
isolating patients at home or closure of high-risk
places like schools can moderate the transmission of
disease-causing pathogenic microorganisms.



Hand-Hygiene Mitigation Strategies Against Global Disease Spreading 3

Several actions within the world air-
transportation network can be implemented to
control disease spreading in the event of a health
emergency (Huizer, Swaan, Leitmeyer, & Timen,
2015). At the global scale, mobility-driven inter-
ventions such as airport closures and deliberate
rerouting of the travelers can reduce the number
of individuals passing through or traveling from/to
regions where dangerous diseases prevail (Nico-
laides, Cueto-Felgueroso, & Juanes, 2013). At the
local scale, actions within each airport, including
the frequent cleaning of public areas (e.g., toilets,
gates, check-in desks), efficient air ventilation, and
enhanced sanitization of frequently touched surfaces
can reduce the risk of contamination and the rate
of transmission of infections. Furthermore, personal
hygiene is among the most important factors to
prevent the spread of an infection (Aiello & Larson,
2002; Aiello, Coulborn, Perez, & Larson, 2008; Null
et al., 2018; Rabie & Curtis, 2006; Wong, Cowling,
& Aiello, 2014). Coughing etiquette, face masks
(Brienen, Timen, Wallinga, Van Steenbergen, &
Teunis, 2010), no face touch, and hand hygiene
are the most common actions that air travelers can
easily adopt. From those actions, hand washing
is simple and therefore is regularly mentioned as
the first recommendation during disease spreading
(World Health Organisation, 2009). A scientific
study on the effects of hand washing on the bacterial
contamination of hands showed that, after a delib-
erate contamination of individuals by touching door
handles and railings in public places, bacteria were
found in 44% of the sample. This percentage was
reduced to 23% after hand washing with water alone,
and to 8% after hand washing with water and plain
soap (Burton et al., 2011). The same study showed
that the effect of hand washing does not depend on
the bacteria species.

While hand hygiene is considered as the first pre-
vention step in the case of an epidemic emergency,
there is lack of evidence for its effects as a mitiga-
tion strategy against global epidemic spreading. In
this work, we study contagion dynamics through the
world air-transportation network, and we elucidate
the impact of hand-hygiene behavioral changes on
the diffusion of infections worldwide. We develop a
computational model that simulates the realistic mo-
bility of air travelers through the air-transportation
system, coupled with the propagation of a hypotheti-
cal infectious disease. Human mobility is modeled by
a stochastic agent-based system that accounts for the
spatial distribution of airports, realistic patterns of

human mobility through the world air-transportation
network, and the data-driven waiting-time distribu-
tions of individuals at origin, destination, and con-
necting airports. Using world air-traffic data, we first
generate the worldwide air-transportation network,
where the nodes are the 2,500 busiest airports and
the links between them are given by the connections
between airports for which flights exist in the data
set. The network describes a heterogeneous meta-
population of airports where each individual air-
port is a subpopulation of individuals (Brockmann
& Helbing, 2013; Balcan et al., 2009; Colizza, Pastor-
Satorras, & Vespignani, 2007). We further develop a
compartmental epidemic model to track the reaction
dynamics of infection contagions as well as the hand-
washing–related behavior of the traveling agents.

Using Monte Carlo simulation, we assess the im-
pact of hand washing at the early stages of a global
epidemic. From the simulation results we measure
the early-time spreading power of the 120 busiest
airports under four different intervention scenarios:
(1) increase of hand-washing engagement homoge-
neously at all airports; (2) increase of hand-washing
engagement only at the source of the disease; (3) in-
crease of hand-washing engagement at the 10 most
important airports of the world air-transportation
network; and (4) increase of hand-washing engage-
ment at the 10 most important airports for each
source of the disease. The aim of this study is to iden-
tify the most effective mitigation strategy of hand hy-
giene contributing the most to the reduction of global
epidemic risk.

2. MATERIALS AND METHODS

2.1. Data Description

We use world air-traffic data provided by the Of-
ficial Airline Guide (OAG), that includes all the trips
(more than 1.9 million) that were booked in Septem-
ber 2017. Each row in the data set states the number
of passengers that traveled from an origin airport to
a destination airport, and indicates any intermediate
connecting flights (see Table I for example).

From the data set, we observe that all trips in
September 2017 were operated through a network of
3,621 unique airports. For each airport, we estimate
the total traffic by adding the number of passengers
for the trips where the airport is denoted as “Origin,”
the number of passengers for the trips where the
airport is denoted as “Destination,” and twice the
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Table I. An Example of Air-Traffic Data Showing that in
September 2017 X1 Individuals Traveled with Direct Flights from
PEK (Beijing, China) to HND (Haneda, Japan), X2 Individuals
Traveled from PEK to HND with a Layover at PVG (Shanghai,
China), and X3 Individuals Traveled from ATL (Atlanta, USA)
to ABV (Abuja, Nigeria) with Connecting flights at JFK (New

York, USA) and CDG (Paris, France) Airports

Origin Connection 1 Connection 2 Destination Passengers

...
...

...
...

...
PEK – – HND X1
PEK PVG – HND X2
ATL JFK CDG ABV X3
...

...
...

...
...

number of passengers for the trips where the airport
is denoted as “Connection” (either Connection 1
or 2). For subsequent computational efficiency, we
restrict our analysis to the subset of the data set cor-
responding to traffic among the 2,500 busiest airports
(by total traffic). This subset accounts for 98.25% of
the total trips and 99.8% of the total traffic.

2.2. Mobility Model

The human mobility model has the form of a
stochastic agent-based tracking system (González,
Hidalgo, & Barabási, 2008; Nicolaides, Cueto-
Felgueroso, González, & Juanes, 2012) that accounts
for the spatial distribution of airports, the detailed
air-traffic data, the correlated and recurrent nature
of human mobility, and the waiting-time distributions
of individuals at different locations. We first gener-
ate the origin–destination flux matrix ODf = [od f

i j ],

where od f
i j is the number of passengers that trav-

eled in September 2017 from origin i to destination j,
and the origin–destination probability matrix ODp =
[odp

i j ], where odp
i j is the probability that an agent trav-

els from origin i to destination j. Each element of
the ODp matrix is calculated as odp

i j = od f
i j/

∑
j od f

i j ,

where
∑

j od f
i j is the total number of passengers that

traveled from origin i. We then assign a “home”
population, Pi , at each subpopulation, i, following
the nonlinear empirical relation Pi = α

√
Ti , where

Ti is the total traffic at airport i, and α is a con-
stant that is adjusted to give a total population size of
N = ∑

i Pi individuals. In other words, each individ-
ual agent is initially assigned to its “home” subpop-
ulation i. Within the mobility route, the agent that
was assigned to home i chooses to travel at a “desti-

nation” airport j with probability extracted from the
ODp matrix. If the two nodes i and j are connected by
more than one path (i.e., direct when the two airports
are connected with direct flights and indirect when
the two airports are connected only with connecting
flights), then the probability that the agent selects a
given path is proportional to the relative number of
passengers traveling in each direct or indirect flight
from origin i to destination j. After each trip (from
origin i to destination j), the agent returns back to its
home airport. Hence, the stochastic mobility model
generates the spatial trajectory for all agents. In ad-
dition, using realistic waiting times at the three dis-
tinct locations where an agent can be (i.e., home, con-
necting airport, or destination) and actual flight times
required to travel between the airports, we express
the spatiotemporal patterns of all the agents at the
granularity of an hour. The waiting times at home
airports, connecting airports, and destinations are
provided by the Bureau of Transportation Statistics
2010 (Barnhart, Fearing, & Vaze, 2014), and follow
right-skewed distributions with means 897.87 hours
(∼37 days), 1.33 hours, and 127.36 hours (∼five
days), respectively. The average flight time from air-
port i to airport j is estimated as the ratio of the
geographical distance between the two airports, di j ,
which is calculated by the spherical law of cosines,
over the average velocity of an airplane, which is as-
sumed to be constant and equal to 640 km/hour con-
sidering the changes in takeoff, climb, cruise, descent,
and landing speeds.

2.3. Epidemic Model

The conventional SIR model in epidemiology
describes the reaction kinetics of infectious diseases
(Vespignani, 2012). According to the SIR model,
each individual is considered as either susceptible (S),
infected (I), or recovered (R). The sum of the com-
partments at any given time t is equal to the total pop-
ulation size (S(t) + I(t) + R(t) = N). The SIR model
describes two distinct processes: the infection pro-

cess, S + I
β1→ 2I, where an infected individual trans-

mits the infection to a susceptible individual with
rate β; and the recovery process, I

μ→ R, where an
infected individual recovers with rate μ (μ−1 is the
average time required for an infected individual to
recover). The ratio R0 = β/μ defines the basic repro-
ductive number of the infection, that is, the average
number of secondary infections an infected individ-
ual causes before it recovers. For a closed population,



Hand-Hygiene Mitigation Strategies Against Global Disease Spreading 5

Fig. 1. Pictorial demonstration of our model. (a) Illustration of the SIRWD traveling population. Each individual can be either Susceptible
to the disease, Recovered from the disease, Infected-Washed (blue hands), or Infected-Dirty. (b) Schematic diagram of the SIRWD infection
reaction. When an Infected-Washed individual comes in contact with a susceptible individual, the probability of transmitting the disease is
smaller compared to the case when the infected individual has “dirty” hands.

the infection dies out exponentially fast when R0 < 1,
while it grows and potentially causes a pandemic for
R0 > 1 (Liu et al., 2018).

In this study, we modify the conventional SIR
model to reflect the effects of hand washing in the
infection process. We formulate the SIRWD model,
where each individual is placed in one of the three
epidemic compartments (susceptible, infected, re-
covered), and it is also categorized into one of the
two hand-cleanliness states, namely, washed (W) or
dirty (D) (Fig. 1(a)). The SIRWD epidemic model is
then expressed as:

S + ID
β1→ 2I,

S + IW
β2→ 2I,

I
μ→ R,

D
p→ W,

W
θ→ D,

where β1 is the infection rate with which an infected
individual with dirty hands transmits the infection to
a susceptible individual (β1 is equal to the infection
rate β of the conventional SIR model), β2 is the in-
fection rate with which an infected individual with
washed hands transmits the infection to a suscepti-
ble individual (β2 < β1), μ is the recovery rate (it is
equal to the recovery rate of the conventional SIR
model), p is the hand-washing engagement rate (de-

noting the percentage of individuals with nonclean
hands that move to the washed state within the next
hour), and θ is the hand-washing effectiveness rate
(θ−1 denotes the average time needed for an indi-
vidual with washed hands to return back to the dirty
state). The infection rate β2, with which an infected
individual with washed hands transmits the infection
to a susceptible individual, is reduced compared to
the base infection rate β1. The percentage reduction
parameter, λ, is such that β2 = (1 − λ)β1. The infec-
tion reactions that are described in the first two ex-
pressions of the SIRWD model are shown in Fig. 1(b).

To be infected, a healthy individual needs
to touch a contaminated surface or come into
contact directly with an infected person. If the
individual is healthy and touches a contaminated
surface—regardless of how long ago he/she washed
his/her hands—he/she will get the bacteria on hands.
However, if he/she washes hands soon after he/she
gets contaminated, there is a significant probability
of removing that bacteria from the hands before
being transmitted to body fluids. Therefore, the
hand-washing rate of healthy individuals affects
the transmissibility of a disease. The SIRWD model
takes into account only the interdependence be-
tween disease transmission probability and the hand
cleanliness of the infected individuals. To model the
process where the hand-washing behavior of suscep-
tible/healthy individuals plays a role in the infection
process, we need to build a more sophisticated model
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based on SEIR reaction kinetics, where the extra
epidemic compartment, E, denotes individuals that
are Exposed to the infection (Brauer, 2017). The
SEIR epidemic model describes the following three
processes: (1) a susceptible individual comes in con-
tact with an infected one and becomes exposed to the

disease with some rate β (S + I
β→ E + I); (2) an ex-

posed individual becomes infected with some rate γ

(E
γ→ I); and (3) an infected individual recovers with

rate μ (I
μ→ R). Both rates, β and γ , are affected by

the hand-washing levels. We keep our analysis simple
by using the conventional SIR model with the as-
sumption that if infected individuals wash their hands
frequently, there is a smaller probability to contam-
inate surfaces or other healthy people directly.

2.4. Initial Conditions and Assumptions

We assume a flu-type disease, where the re-
covery rate is μ = 1/4 days−1 (i.e., on average each
infected individual recovers after four days) and
the reproductive number is R0 = 3 (i.e., on aver-
age each infected individual transmits the disease
to three other individuals). The infection rate in
the SIR model is β = μR0, which is equal to the

infection rate, β1, of the processes S + ID
β1→ 2I in

the SIRWD model. The infection rate of the process

S + IW
β2→ 2I is equal to β2 = (1 − λ)β1, where λ is

the percentage reduction parameter of the infection
rate due to hand washing. A previous study stated
that effective hand washing can prevent 50% to 70%
of waterborne and foodborne infections (Lee, Hong,
& Kim, 2015). However, there is a limitation in the
number of studies that measure experimentally the
effect of hand washing on the reduction of airborne
or direct-contact infections. Here, we initially set the
value of λ equal to 0.4 and we further investigate its
variation in Section 3.3. The hand-washing effective-
ness rate, θ (whose inverse sets the average duration
before washed hands become again contaminated), is
initially set to θ = 1/1.5 hours−1. We investigate the
sensitivity to this parameter in Section 3.3. We con-
sider that at most one in five people in an airport have
cleaned hands at any given moment in time (i.e., 20%
of airport population). This is equivalent to hand-
washing engagement rate among the noncleaned in-
dividuals equal to p = 0.12 per hour (i.e., every hour
about 12% of the noncleaned individuals are washing
their hands). We declare this hand-washing engage-
ment rate (p = 0.12 hours−1) as the status quo as we

discuss it at the Section 2.5. We vary p to analyze and
quantify the effect of hand-washing engagement on
different scenarios of epidemic spreading.

2.5. Status Quo of Hand-Washing Engagement
Rate

To derive an approximation of the status quo
level of hand cleanliness (i.e., the percentage of peo-
ple with cleaned hands) in the population of an air-
port at any given moment, we simulate the dynamics
of a closed population following some assumptions
derived from the literature. We use data from a sur-
vey performed by the American Society for Micro-
biology (2003), which revealed that 30% of travelers
do not wash their hands after using the public toi-
lets at airports, implying that the remaining 70% are
compliers with hand washing. Following a study in
a college town environment, we consider that only
the 67% of the compliers wash their hands properly
(i.e., with water and soap and for the recommended
by CDC duration of time; Centers for Disease Con-
trol and Prevention, 2016), while the remaining 33%
are wetting their hands quickly and/or without soap
(Borchgrevink, Cha, & Kim, 2013). Therefore, we as-
sume that in an airport population of N individuals,
only the 70% · 67% = 49.6% of N are compliers with
effective hand washing. Furthermore, we assume that
each individual washes his/her hands on average be-
tween 4 and 10 times per day (Merk, Kühlmann-
Berenzon, Linde, & Nyrén, 2014), which means that
in a 24-hour time frame, one event of hand washing
takes place every 2.5–6 hours. We assume that the
frequency of hand washing follows a normal distri-
bution with mean equal to 4.5 hours and standard
deviation equal to 1 hour. We also consider that the
duration of cleanliness of hands after hand washing
follows an exponential distribution with mean value
equal to 1.5 hours.

Using the above approximations, we find that
at any given moment, the percentage of passengers
in an airport that have cleaned hands has an upper
bound of 24%. Given that this is a very optimistic
upper bound of the reality, we assume and use in
simulations that the status quo for the percentage
of individuals that have clean hands in an airport at
any given moment is 20%. To preserve a stable 20%
hand-cleanliness level over time in an airport, the
hand-washing engagement rate in the compartmental
SIRWD model, that indicates the rate of hand washing
per hour between individuals with noncleaned hands,
is calculated to be equal to p = 0.12 hour−1 (i.e.,
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12% of “dirty” individuals wash their hands within an
hour). This indicates the status quo of hand-washing
engagement rate. In the case that we would like to
increase the level of hand cleanliness in an airport to
30% or 40% or 50% or 60% we need to increase the
hand-washing engagement rate to 0.21 hour−1 or 0.32
hour−1 or 0.49 hour−1 or 0.73 hour−1, respectively.

2.6. Monte Carlo Simulations

We implement the epidemic model within the
mobility model using Monte Carlo simulation to
track the mobility and contagion dynamics through
the air-transportation network. In the simulations
we consider different hand-hygiene mitigation
strategies, and study their effects on the propagation
and diffusion of a disease at the global scale. We first
study the conventional SIR epidemic model to iden-
tify the spatiotemporal structure of the disease for
different seeding scenarios and to identify the most
influential spreaders within the air-transportation
network. Furthermore, we study four hand-hygiene
scenarios and their effectiveness toward disease
spreading inhibition: (1) homogeneous increase
of hand-washing engagement at all airports, (2)
increased hand-washing engagement at the 10 most
influential airports in the network, (3) increased
hand-washing engagement at the 10 most influen-
tial airports for each source of the disease, and ()
increased hand-washing engagement only at the
source of the disease.

At the initial time step of each simulation, t = 0,
we declare an airport i as the source of the disease
where we randomly choose 10 individuals to seed the
infection. For each analysis, we run 100 realizations
of 105 traveling agents each. At each time step, which
corresponds to one hour, we let individuals travel,
wash their hands, and recover or transmit the disease
to susceptible agents when those individuals are
infected. At each time step, an infected individual
recovers with probability �I → R = 1 − exp(−μ).
When the transmission of an infection is associated
with hand cleanliness of the infected individuals
(as described by the SIRWD model), the probability
of a susceptible to get the infection is �S → I =
(1 − (1 − β1/Ni )ID,i ) + (1 − (1 − β2/Ni )IW,i , where
ID,i and IW,i are the numbers of “dirty” and
“washed” infected individuals, respectively, at air-
port i and Ni is the total population at airport i. The
probability that an individual with washed hands
becomes “dirty” is �W → D = 1 − exp(−θ) and the
probability that an individual with “dirty” hands will

wash his/her hands, within each one-hour time step,
is �D → W = 1 − exp(−p). Using these probabilities,
the computational model generates the stochastic
epidemic transitions for the traveling agents over
time. In our analysis, we vary the model parameter
p, considering different hand-hygiene interventions,
and analyze their impact on global disease spreading.

2.7. Evaluating the Early-Time Impact of the
Disease

We evaluate the early-time impact of the disease
by measuring two quantities that are correlated:
the disease prevalence and the Total Square Dis-
placement (TSD) two weeks after the disease is
deliberately seeded in a source. The disease preva-
lence (PREV) is given by the total number of
affected individuals (infected plus recovered) (Roth-
man, 2012). However, as we wish to evaluate not
only the total number of infected individuals but also
how well spread they are within the globe, we use
the TSD of the infected individuals as a simulation
metric (Nicolaides et al., 2012). This metric is given
by the formula TSD = ∑I(t)

j=1 (Lj − 〈L〉)2, where
I(t) is the number of infected individuals at time
t = 2 weeks, Lj is the geographic location of the jth
infected individual, and 〈L〉 is the position of the
geographic center of the infection. The geographic
center is the center of gravity (aka the center of mass)
for the locations of all infected individuals. To find
the geographic center, we first convert the latitude
and longitude of each location Lj from degrees to ra-
dians, and then into Cartesian coordinates using the
formulas: xLj = cos(latLj π/180) · cos(lonLj π/180),
yLj = cos(latLj π/180) · sin(lonLj π/180), and zLj

= sin(latLj π/180). We then calculate the mean of

the Cartesian coordinates by x = ∑A(t)
j=1 xLJ , y =

∑A(t)
j=1 yLJ , and z = ∑A(t)

j=1 zLJ , and finally we convert
the average coordinates (x, y, z) into latitude
and longitude in radians using the four-quadrant
inverse tangent function 〈L〉 = ((180/π) ·
atan2(z,

√
x2 + y2), (180/π) · atan2(x, y)).

3. RESULTS

3.1. Conventional SIR Model

In our initial analysis, we first use the SIR model
(considering that the infection reaction process is in-
dependent from the hand cleanliness of the infected
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Fig. 2. The impact of the source of the
disease on its global spread. (Middle)
Ranking of the 40 most influential air-
ports in the world with respect to the
TSD of the infected individuals two
weeks after the disease started from
each one of these airports. (Right) The
two-week prevalence of the disease as
measured by the percentage of world
population that have been affected (in-
fected plus recovered) by the disease
two weeks after a disease started from
each of these major airports. (Left) The
total monthly traffic of each of those
major airports as has been calculated
using the world air-traffic data set from
September 2017. Each spreading sce-
nario is evaluated over 100 mobility
and epidemic realizations.

individuals) to estimate the capacity of airports to
spread an infectious disease globally. We seed the
disease in each of the world major airports, and
simulate the contagion dynamics over a period of
two weeks after the outbreak. We rank the airports
according to their spreading capacity, as quantified
by the TSD of infected individuals (Fig. 2, middle).
From this analysis, we observe that total traffic alone
cannot predict the power of an airport to spread the
disease (comparing left and middle panels in Fig. 2).
Total traffic should be accounted for alongside
with the location of each spreader airport and the
spatial correlations with other influential airports
in the network. NRT (Narita International Airport,
Tokyo, Japan) and HNL (Honolulu International
Airport, Honolulu, USA) airports are indicative
examples: while they ranked in the 46th and 117th
place by total traffic, respectively, they contribute
significantly to the acceleration and expansion of a
global disease contagion (ranked by TSD on the 7th

and 30th place, respectively). This unexpected phe-
nomenon happens because NRT and HNL combine
three important features with high impact on the
disease spreading: (1) they have direct connections
with the world’s biggest mega-hub airports, (2) they
operate long-range in- and out-bound international
flights, and (3) they are located at geographically
conjunctive points between the East and the West
(Nicolaides et al., 2012).

The bar plot to the right of Fig. 2 shows the
two-week prevalence of the disease, as measured
by the percentage of world population that have
been affected by the disease two weeks after a
disease started from each of the major airports. The
two-week prevalence is highly correlated with the
total traffic of the airport (the Pearson correlation
coefficient is equal to 0.88), indicating that large
airports have a big impact in terms of absolute
number of affected (infected plus recovered)
individuals.
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Table II. Reduction of the Disease Impact with a Homogeneous Increase of Hand-Washing Engagement Worldwide

Level of hand cleanliness 20% X = 30% X = 40% X = 50% X = 60%
(@all airports worldwide) (status quo)
Rate of hand washing (per hour) 0.12 0.21 0.32 0.49 0.73
(@all airports worldwide) (status quo)
Reduction (95% CI) of disease impact (TSD) – 23.7% 43.4% 58.6% 69.1%
(TSD20% − TSDX)/TSD20% (21.9–25.5) (42.0–44.9) (57.6–59.6) (68.2–70.0)
Reduction (95% CI) of disease impact (PREV) – 18.2% 33.0% 45.2% 55.4%
(PREV20% − PREVX)/PREV20% (17.4–18.9) (32.3–33.6) (44.6–45.8) (54.8–56.0)

Note: These are point estimates and 95% confidence intervals calculated across 120 disease spreading scenarios. In each scenario, the
source of the disease is one of the 120 largest airports in the world. Each spreading scenario is evaluated over 100 mobility and epidemic
realizations. Throughout these simulations, the following infection-disease–related parameters and hand-washing parameters have been
used: R0 = 3, μ = 1/4 days−1, β1 = R0 × μ = 0.03125, λ = 0.4, θ = 1/1.5 hours−1.

3.2. SIRWD Model: Worldwide Homogeneous
Hand-Washing Intervention

The effects of hand hygiene are then incorpo-
rated in the simulations, and we focus the analysis
on the epidemic reaction kinetics as described by
the SIRWD model. For each simulation, the disease
is seeded at one of the major airports (10 randomly
chosen individuals are infected at time t = 0), and
the geographic epidemic expansion due to the mo-
bility of infected agents is recorded. We first consider
the status quo scenario, where the hand-cleanliness
level is on a 20% steady state at each airport in the
world. The rate of hand washing per hour that cor-
responds to 20% cleanliness is equal to 0.12 hour−1

(see Table II). We rank the airports according to the
TSD metric, and observe that LHR has the greatest
impact while LAX, JFK, SYD, and CDG are among
the five most influential spreaders worldwide. Using
the same ordering of airports, we repeat the simu-
lations, by increasing the hand-washing engagement
rate homogeneously at all airports to achieve global
hand-cleanliness levels of 30%, 40%, 50%, and 60%.
For each hand-washing engagement rate (or hand-
cleanliness level), we analyze the changes in the im-
pact of contagion.

Fig. 3(a) shows the early-time evolution of the
fraction of affected individuals over the first two
weeks after a disease is seeded at DXB (Dubai Air-
port). An increase of hand-cleanliness level at all
airports from 20% to 60% leads to a significant re-
duction in the percentage of affected individuals in
the total population, from around 1.5% to less than
0.5%. In Fig. 3(b), we demonstrate the spreading
power of the most influential spreader airports, as
measured by TSD of infected individuals two weeks
after a disease was initiated at each of these major
airports. We consider several scenarios of homoge-

neous hand-cleanliness level: 20% (status quo), 30%,
40%, 50%, and 60%. A very significant reduction in
TSD is observed as the cleanliness level increases,
demonstrating that hand hygiene is one of the most
important factors to control or even prevent an infec-
tion. For example, the spread of an infection seeded
in LHR covered about 2.6 · 1010 square kilometers
around the center of mass of the infection within
two weeks, while the infected area reduced to less
than 1 · 1010 square kilometers when the cleanliness
level increased from 20% to 60% globally. The rela-
tive reduction with respect to the status quo scenario
is calculated as (TSD20% − TSDX)/TSD20% for the
TSD metric, or as (PREV20% − PREVX)/PREV20%

for the disease prevalence metric, where the cleanli-
ness level, X, increases from 30% to 60% worldwide.
Our results indicate a significant reduction of the im-
pact of a disease worldwide, by 24% to 69% as cal-
culated by the TSD, depending on the hand-washing
engagement rate worldwide (or by 18% to 55% as
calculated by the global prevalence of the disease,
Table II).

3.3. The Effect of SIRWD Model Parameters on
the Reduction of Global Pandemics due to
Hand Washing

We have conducted a comprehensive sensitivity
analysis to elucidate the impact of each individ-
ual model parameter (hand-washing–related and
infectious-disease-related) on the reduction of
global pandemics due to hand washing. Throughout
this analysis, we consider that the level of hand
cleanliness increases from 20% (status quo) to 40%
at all airports worldwide.

First, we consider the effect of clean hands on
the disease infection and its contribution to the
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Fig. 3. The effect of a global, homogeneous hand-washing strategy on the impact of a disease spreading. (a) The fraction of affected (infected
plus recovered) individuals worldwide over the first two weeks after the infection was initiated at Dubai International Airport at different
levels of hand cleanliness. (b) Airports are ranked according to their spreading power to transmit a disease faster and further across globe
as measured by the total squared displacement of infected individuals two weeks after a disease started from each individual airport. From
left to right the hand-cleanliness level increases from 20% (status quo) to 60%. Each spreading scenario is evaluated over 100 mobility and
epidemic realizations.

analysis of the global reduction of an infectious
disease due to hand-washing interventions. In our
model, we have parameterized this effect using λ,
which is defined as the percentage reduction of the
infection rate of individuals with “clean” hands com-
pared to the infection rate of individuals with “dirty”
hands (β2 = (1 − λ)β1). Table III(a) shows the effect
of λ on the global reduction of an infectious disease.
As expected, for small values of λ (β2 ≈ β1), the
reduction of the global impact of a disease due to

hand washing is very small, while for large values of
λ (β2 
 β1) the effect of hand washing on disease
spreading is significantly larger.

Second, we examine the effect of the hand-
washing effectiveness rate—parameterized in our
model by θ (θ−1, which is the average time after
which an individual with washed hands returns back
to the “dirty” state)—on the global reduction of
an infectious disease. In Table III(b), we present
the results from our simulations for different values



Hand-Hygiene Mitigation Strategies Against Global Disease Spreading 11

Table III. The Effect of the Two Hand-Washing–Related Parameters (λ and θ) on the Global Reduction of an Infectious Disease

(a) The effect of the reduction of the infection rate parameter due to hand washing λ (β2 = (1 − λ)β1) on the global reduction of an
infectious diseasea

Percentage Reduction Parameter of Infection Rate Due to Hand Washing (λ)

Varying Model Parameter 0.7 0.6 0.5 0.4 0.3 0.2 0.1

Reduction (95%CI) of disease impact 66.6% 59.2% 52.8% 43.4% 35.2% 25.0% 11.6%
(TSD20% − TSD40%)/TSD20% (65.7–67.6) (58.2–60.2) (51.6–54.0) (42.0–44.9) (33.6–36.8) (23.1–26.8) (9.7–13.5)

Reduction (95%CI) of disease impact 52.1% 45.3% 39.8% 33.0% 25.8% 18.5% 8.3%
(PREV20% − PREV40%)/PREV20% (51.4–52.8) (44.7–46.0) (39.0–40.5) (32.3–33.6) (25.1–26.6) (17.7–19.3) (7.4–9.2)

(b) The effect of the hand-washing effectiveness rate θ on the global reduction of an infectious diseaseb

Hand-Washing Effectiveness Rate θ (Hours−1)

Varying Model Parameter 0.5−1 1−1 1.5−1 2−1 2.5−1

Reduction (95%CI) of disease impact 33.5% 39.5% 43.4% 47.5% 48.1%
(TSD20%; − TSD40%;)/TSD20%; (31.7–35.2) (37.9–41.1) (42.0–44.9) (46.2–48.9) (46.8–49.5)

Reduction (95%CI) of disease impact 24.9% 29.6% 33.0% 35.1% 36.7%
(PREV20% − PREV40%)/PREV20% (24.1–25.8) (28.8–30.4) (32.3–33.6) (34.4–35.8) (36.0–37.4)

Note: Throughout this analysis we consider that the level of hand cleanliness increases from 20% (status-quo) to 40% at all airports world-
wide. Highlighted are the results as documented in the main results Table II for the following infection diseases parameters: R0 = 3, μ = 1/4
days−1, β1 = R0 × μ = 0.03125, and hand-washing parameters λ = 0.4, θ = 1/1.5 hours−1. Each spreading scenario is evaluated over 100
mobility and epidemic realizations.
aFixed model parameters: R0 = 3, μ = 1/4 days−1, β1 = R0 × μ and θ = 1/1.5 hours−1.
bFixed model parameters: R0 = 3, μ = 1/4 days−1, β1 = R0 × μ and λ = 0.4

of the hand-washing effectiveness rate θ . When
the average effective persistence of hand washing
is large (θ−1 ∼ 2 − 2.5 hours), the impact of hand
washing on the global spread of an infectious disease
is larger compared to the case where the effective
persistence of hand washing is short (θ−1 ∼ 0.5 − 1
hour). Both λ and θ−1 can take large values with
proper hand washing. Therefore, we conclude that
proper hand washing can have an important effect on
the global spread of touch-transmitted and airborne
infectious diseases.

Furthermore, we carry out a sensitivity analysis
for the infectious-disease–related parameters (β1, μ,
and R0) and their impact on our main results and con-
clusions. Note that the three aforementioned param-
eters are related by R0 = β1/μ. Table IV(a) shows
the simultaneous sensitivity of the disease recovery
rate, μ, and infection rate, β1—keeping the basic re-
productive number, R0, constant—on the global re-
duction of an infection due to hand-washing inter-
vention. In these simulations we vary the recovery
rate from μ = 1/3 to 1/5 days−1 in 0.5-day incre-
ments. The infection rate, β1, changes accordingly,
so that the basic reproductive number, R0, remains

constant and equal to 3. From the results presented
in Table IV(a), we observe that as the average ef-
fective duration of a disease, μ−1, increases from
three to five days (and therefore the infection rate
decreases from β1 = 0.042 to β1 = 0.025 keeping the
reproductive number, R0, constant), the reduction of
the global infection impact due to hand washing, as
measured by the TSD, decreases slightly from 48.1%
to 40.65% (from 37% to 29.5% as measured by the
global prevalence of the disease). In Table IV(b), we
present the simultaneous sensitivity of the disease
recovery rate, μ, and basic reproductive number,
R0—keeping the infection rate, β1, constant—on the
global reduction of an infection due to hand-washing
intervention. When the average effective duration of
a disease, μ−1, increases from three to five days (and
therefore the basic reproductive number increases
from R0 = 2.25 to R0 = 3.75 in order to keep, β1, con-
stant), the reduction of the global infection impact
due to hand washing measured by the TSD changes
from 47.7% to 41.4% (33.4% to 32.2% when mea-
sured by the global prevalence of the disease).

Similar conclusions may be derived from
Table IV(c), which presents the simultaneous
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Table IV. The Effect of the Infectious-Disease–Related Parameters (β1, μ, and R0) on the Global Reduction of an Infectious Disease Due
to Hand Washing

(a) The effect of the infection recovery rate μ (keeping the reproductive number R0 constant) on the global reduction of an infectious
disease due to hand washinga

Recovery Rate μ(days−1)/Infection Rate β1

Varying Model Parameter 3−1/0.042 3.5−1/0.036 4−1/0.031 4.5−1/0.028 5−1/0.025

Reduction (95%CI) of disease impact (TSD) 48.1% 46.3% 43.4% 42.5% 40.65%
(TSD20% − TSD40%)/TSD20% (46.8–49.5) (44.5–47.6) (42.0–44.9) (41.0–44.0) (39.0–42.3)

Reduction (95%CI) of disease impact (PREV) 36.9% 35.0% 33.0% 30.9% 29.5%
(PREV20% − PREV40%)/PREV20% (36.0–37.8) (34.3–35.7) (32.3–33.6) (30.2–31.6) (28.8–30.2)

(b) The effect of the recovery rate μ (keeping the infection rate β1 constant at he global reduction of an infectious disease due to hand
washingb

Recovery Rate μ (days−1)/Reproductive Number R0

Varying Model Parameter 3−1/2.25 3.5−1/2.63 4−1/3 4.5−1/3.37 5−1/3.75

Reduction (95%CI) of disease impact (TSD) 47.7% 45.2% 43.4% 44.4% 41.4%
(TSD20% − TSD40%)/TSD20% (45.9–49.5) (43.6–46.9) (42.0–44.9) (43.0–45.7) (40.1–42.8)

Reduction (95%CI) of disease impact (PREV) 33.4% 32.5% 33.0% 32.9% 32.2%
(PREV20% − PREV40%)/PREV20% (32.5–34.2) (31.7–33.3) (32.3–33.6) (32.1–33.6) (31.5–32.8)

(c) The effect of the infection rate β1 (keeping the recovery rate μ constant) on the global reduction of an infectious disease due to hand
washingc

Infection Rate β1/Reproductive Number R0

Varying Model Parameter 0.02/1.92 0.025/2.4 0.031/3 0.035/3.36 0.04/3.84

Reduction (95%CI) of disease impact (TSD) 38.8% 40.2% 43.4% 44.4% 44.8%
(TSD20% − TSD40%)/TSD20% (36.3–41.4) (38.2–42.1) (42.0–44.9) (43.3–45.7) (43.7–45.9)

Reduction (95%CI) of disease impact (PREV) 25.8% 29.4% 33.0% 34.3% 35.5%
(PREV20% − PREV40%)/PREV20% (25.0–26.7) (28.6–30.3) (32.3–33.6) (33.7–35) (34.7–36.2)

Note: Throughout this sensitivity analysis we consider that the level of hand cleanliness increases from 20% (status-quo) to 40% at all airports
worldwide. Highlighted are the results as documented in the main results Table II for the following infection diseases parameters: R0 = 3,
μ = 1/4 days−1, β1 = R0 × μ = 0.03125, and hand-washing parameters λ = 0.4, θ = 1/1.5 hours−1. Each spreading scenario is evaluated
over 100 mobility and epidemic realizations.
aFixed model parameters: R0 = 3, λ = 0.4 and θ = 1/1.5 hours−1.
bFixed model parameters: β1 = 0.03125, λ = 0.4 and θ = 1/1.5 hours−1.
cFixed model parameters: μ = 1/4 days−1, λ = 0.4 and θ = 1/1.5 hours−1.

sensitivity of the infection rate, β1, and basic repro-
ductive number, R0— keeping the recovery rate, μ,
constant—on the global reduction of an infection
due to hand-washing intervention. We observe that,
as β1 increases (and therefore R0 increases to keep
μ constant), the relative reduction of the global
infection impact due to hand washing measured by
the TSD or PREV increases slightly, showing that
hand washing may be slightly more effective in the
case of more aggressive infectious diseases.

The above analysis suggests that small changes
in the infectious-diseases–related parameters (β1, μ,

and R0) do not have a significant effect on the global
reduction of infection impact due to hand washing,
rendering our conclusions robust with respect to
disease type as measured by combinations of the
above epidemiological parameters. In contrast,
hand-washing–related parameters have a significant
effect on the results, perhaps as expected (Table III).

3.4. SIRWD Model: Strategic Hand-Washing
Policies

Since increasing the level of hand-washing en-
gagement homogeneously at all airports is very
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costly, and maybe infeasible, we simulate some other
less-costly scenarios. These scenarios consider the in-
crease of the hand-washing engagement rate only
at a small number of “key” airports. We test three
intervention scenarios that implement the increase
of hand-washing engagement rate at: (i) the 10 key
airports worldwide, (ii) the 10 key airports of each
source of the disease, and (iii) only at the source of
the disease.

For the intervention scenario (i), we preidentify
the 10 key airports of the world air-transportation
network by multiplying the susceptibility of each
airport by the strength of the airport to spread an
infection globally. The strength of each airport i is
calculated as si = Ti ki

∑ki
i=1 wi j di j , where Ti is the to-

tal outgoing traffic from i, ki is the number of connec-
tions of i (i.e., the degree of node i in the network),
and

∑ki
i=1 wi j di j is the effective length of all links of

i, which is the weighted sum of the actual distances
di j between i and j nodes. The weights wi j are the
fractions of passengers traveling from i to j. The sus-
ceptibility of airport i is calculated using the simula-
tions of the conventional SIR model, as the weighted
average fraction of infected individuals that arrive at
i over all the seeding scenarios considered in the SIR
model described in Section 2. Using the above com-
bined metric (susceptibility × strength), we identify
the 10 key airports of the global air-transportation
network as being the LHR, LAX, JFK, CDG, DXB,
FRA, HKG, PEK, SFO, and AMS. For the inter-
vention scenario (ii), we identify 10 key airports for
each source of the disease, by multiplying the airport
strength with the source-dependent susceptibility.
The source-dependent susceptibility of airport i from
the source of the infection airport j, is calculated
as the fraction of infected individuals that arrive
at i from j. For this intervention scenario, prior
knowledge of the source of the disease is required
and for different sources of the disease, we have
different sets of key airports (see Fig. 4). Finally, for
the intervention scenario (iii), since we increase the
hand-washing engagement rate only at the source
of the disease, prior knowledge of the source is
required.

Our results indicate that the design of a less
costly (compared to homogeneous) strategic plan for
hand-washing intervention only at 10 preidentified
key airports worldwide (Scenario (i)) could lead to
a significant reduction of the disease impact calcu-
lated by the TSD from ∼ 8% to ∼ 37% (or ∼ 7% to
∼ 29% calculated by the disease prevalence, Fig. 4).
If the strategic plan is deliberately implemented only

at the 10 most important airports for each source of
disease (Scenario (ii)), we observe a further reduc-
tion of the disease impact. However, this further re-
duction is statistically different from that of Scenario
(i) only in terms of the prevalence of the disease,
but not in terms of geographical spreading, as cal-
culated through the TSD metric. Intervention Sce-
nario (iii), which considers enhancing hand-washing
engagement only at the source of the disease, has a
significant effect on the reduction of disease impact;
yet, this effect is smaller than that of intervention
Scenarios (i) and (ii).

4. DISCUSSION

In this work, we analyze contagion dynamics
through the world air-transportation network, and
the impact of hand-hygiene behavioral changes
of air travelers against global epidemic spread-
ing. Using well-established methodologies, we
apply simulations to track traveling agents and
their hand-washing activity and analyze the ex-
pansion of flu-type epidemics through the world
air-transportation network. Using Monte Carlo sim-
ulation, we measure the early-time spreading power
of the major airports in the world under different
hand-hygiene interventions.

Our data-driven analysis shows that at most one
over five people have “clean” hands at any given mo-
ment in time (i.e., 20% of airport population). Our
simulation results suggests that, if we were able to in-
crease the level of hand cleanliness at all airports in
the world from 20% to 30%, either by increasing the
capacity of hand washing and/or by increasing aware-
ness (Funk, Gilad, Watkins, & Jansen, 2009) among
individuals and/or by giving the right incentives to in-
dividuals, a potential infectious disease would have
a worldwide impact that is about 24% smaller com-
pared to the impact that the same disease would have
with the 20% level of hand cleanliness. Increasing
the level of hand cleanliness to 60% at all airports in
the world would have a reduction of 69% in the im-
pact of a potential disease spreading. We investigate
how those results change for different hand-washing
model parameters and we perform sensitivity analy-
sis of the epidemiological model parameters showing
that our results are quite robust with respect to the
infectiousness of the disease.

Moreover, we design and evaluate a less costly
(compared to homogeneous) strategic plan for hand
washing at a small number of locations. Under this
intervention scenario, our simulations identify the 10
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Fig. 4. The effect of strategic hand-washing policies on the impact of disease spreading. (a) The 10 key airports of each source of disease.
When the disease is seeded in each of the source (in this plot we show as source the 42 busiest airports of the network), we increase the
hand-washing engagement rate at the 10 key airports in relation to each source for scenario (ii) of our simulations and analyze the early-
time contagious dynamics. (Lower) The locations of the 10 important airports for HNL—Honolulu International Airport (left) and for
DXB—Dubai International Airport (right) shown in the global map. (b) Reduction of the disease impact as a function of the level of hand
cleanliness (or hand-washing engagement rate) with respect to status quo for the three different intervention strategies (scenarios). Disease
impact is calculated with respect to the Total Square Displacement (TSD) at the left and the Prevalence of the disease (PREV) at the right.
These are point estimates and 95% confidence intervals across 120 disease spreading scenarios. In each spreading scenario, the source of
the disease is one of the 120 largest airports in the world. Each spreading scenario is evaluated over 100 mobility and epidemic realizations.
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most important airports of the network, for which
increasing the level of hand cleanliness (or hand-
washing engagement rate) only at those, the im-
pact of the disease spreading would decrease by 8%
to 37%.

Our current approach has some limitations. First,
we use the simple SIR reaction kinetics model, while
a more complicated model like the SEIR (where E
denotes the Exposed compartment) could provide
inferences on the impact of hand-washing behavior
among the individuals exposed to the disease on the
expansion of epidemics. Second, at each location we
consider a closed, homogeneous population, where
each individual may come in close contact with any
other individual with the same probability. In other
words, we assume homogeneous population mixing
within each subpopulation. Of course, in reality, the
pattern of contacts among individuals within a popu-
lation is not random but quite heterogeneous. While
we believe that heterogeneity in long-range mobil-
ity patterns (that we take well into account using
real-world human travel data) dominates the effect
of the heterogeneity of contacts within subpopula-
tions on the global spread of infectious diseases, fu-
ture research may focus on elucidating the impact of
those local-scale contact patterns. A third limitation
is the assumption of a homogeneous hand-hygiene
behavior of air travelers, as we do not know the ac-
tual hand-washing activity that varies among individ-
uals within a local population and among individuals
from different societies and cultures. Observational
studies on human personal-hygiene habits can pro-
vide an understanding on hand-washing–related be-
havior and insights on how social interventions can
change it.

Epidemiological outbreaks not only increase
global mortality rates, but also have a large socioe-
conomic impact that is not limited to those countries
that are directly affected by the epidemic. Outbreaks
reduce the consumption of goods and services, nega-
tively affecting the tourism industry, increasing busi-
nesses’ operating costs, and speeding the flight of
foreign capital, generating massive economic costs
globally. For instance, even the relatively short-lived
SARS epidemic in 2003 led to the cancellation of nu-
merous flights and to the closure of schools, wreaking
havoc in Asian financial markets and ultimately cost-
ing the world economy more than $30 billion (Smith,
2006). Hypothetical scenarios of future global pan-
demics give estimates on the economic effects. The
worldwide spread of a severe infectious disease is es-
timated to cause approximately 720,000 deaths per

year and an annual reduction of economic outcome
of $500 billion (i.e., ∼ 0.6% of the global income)
(Fan, Jamison, & Summers, 2018). In such severe
scenarios where markets shut down entirely, a mas-
sive global economic slowdown is expected to oc-
cur shrinking the GDP of national economies. Of
course, wealth and income effects are expected to
differ sharply across countries, with a major shift of
global capital from the affected economies (i.e., of
developing countries) to the less-affected economies
(i.e., of North America and Europe).

The effectiveness of mitigation strategies against
global pandemics is evaluated through the total
expected cost versus the total public health benefit
(Chung, 2015). The target of each strategy is to
maximize the social welfare by incurring in the
minimum economic cost. For interventions where
travel restrictions are implemented (Ferguson et al.,
2006), the cost increases with the number of closed
airports and the number of individuals that get
stranded in those airports. The reward is related to
the relative decrease in the global footprint of the
disease, compared with the null case of noninterven-
tions. In contrast to the mobility-driven strategies
that change the population mobility patterns, other
solutions such as hand washing appear to be more
cost- and reward-effective. A future research on
the socioeconomic impact of global pandemics and
the cost-effectiveness ratio of different mitigation
strategies (e.g., hand washing, vaccination, airport
closures, mobility routing diversions) against disease
spreading would evaluate the efficiency and sig-
nificance of hand-hygiene interventions. However,
while hand hygiene is considered as the first preven-
tion step in the case of an epidemic emergency, the
capacity of hand-washing facilities in crowded places
including airports, is limited only to wash basins at
restrooms. It is not known, however, if increased
capacity would enhance hand-washing engagement
by air travelers. New technology is being developed
aiming to increase the capacity of facilities even
outside restrooms, thus expanding the options for
hand hygiene and the solutions for air and surface
sterilization. Airbus (2018), for example, is exploring
an innovative antimicrobial technology that is able
to eliminate viruses and pathogens from aircraft
surfaces (e.g., tray tables, seat covers, touch screens,
galley areas). Boeing is also exploring a proto-
type self-sanitizing lavatory that uses ultraviolet
light to kill 99.99% of pathogens (Boeing, 2016).
At the same time, robotic systems for dirt detec-
tion and autonomous cleaning of contaminated
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surfaces (Bormann, Weisshardt, Arbeiter, & Fischer,
2013) and smart touch-free hand-washing systems
(Smixin, 2017) are promising tools on the evolution
of cleaning technologies.

An important question is how such smart
hand-washing technologies will be adopted by the
general public, and what incentives can promote
hand-washing behavioral changes. Do digital nudges
(motivation messages) make health-related estab-
lishments attractive to individuals? A recent study
has found that nudges have been effective at im-
proving outcomes in a variety of health-care settings
including a significant increase of influenza vaccina-
tion rates (Patel, 2018). Can social influence or peer
effects improve hand-washing engagement? Recent
works have identified that social influence plays an
important role in many behaviors like exercise or diet
(Aral & Nicolaides, 2017; Lim & Meer, 2018), and
there is some initial evidence that it can play a role in
individual hygiene (Grover et al., 2018). There is cer-
tainly a need for rigorous and carefully designed field
experiments on a large population scale, to identify
and measure the causal effect of digital nudges,
incentives, and peer influence on public hand-
washing engagement of air travelers as well as the
mechanisms of health-enhancing human behavior
change.

The current research can potentially shape the
way policymakers design and implement strategic
interventions based on promoting hand washing in
airports, which could help hindering any infection
within a confined geographical area during the early
days of an outbreak, inhibiting its expansion as a
pandemic. Our study concludes that population en-
gagement with proper hand hygiene could be a sim-
ple and effective solution for preventing transmis-
sion of infections and reducing the risk of massive
global pandemics. This should be followed up by
the design of mechanisms that enable improvements
with respect to the capacity of hand-washing facili-
ties in public places, and different interventions that
will enhance the adoption of hand-hygiene–related
behaviors.
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